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THE MOMENTS OF MATCHED AND MISMATCHED HIDDEN MARKOV MODELS

I. INTRODUCTION

Hidden Markov models (HMMs) are statistical models of nonstationary time

series or signals. In speech applications, they are used to characterize

the time variation of the short term spectra of spoken words. A specific

example is the speaker-independent isolated word recognition (SIIWR)

problem, where HMMs characterize the words in a finite-size vocabulary.

Different words are characterized by different HMMs.I

Every HMM is comprised of two basic parts: a Markov chain and a set of

random variables. The Markov chain has a finite number of states, and each

state is uniquely associated with one of the random variables. The state

sequence generated by the chain is not observable; i.e., the Markov chain is

"hidden." At each time t = 0, 1, 2, .... , the Markov chain is assumed to be

in some state; it transitions to another state at time t + 1 according to

its transition probability matrix. At each time t, one observation is

generated by the random variable associated with the state of the Markov

chain at time t. The observations are referred to as symbols. If the

random variables assume only a finite set of values, the HMM is referred to

as a finite symbol HMM. If the random variables assume a continuum of

values, the HMM is called a continuous symbol HMM. The full parameter set

defining an HMM is comprised of the initial state probability density

function of the Markov chain at time t = 0, the Markov chain state

transition probability matrix, and the probability density functions of each

of the random observation variables.

The act of computing specific numerical values for the various

parameters of an HMM is called "training," and training is equivalent to

solving a mathematical optimization problem to determine maximum likelihood
2

estimates of the HMM parameters. In this paper, it is assumed that the

training phase is completed and that the HMMs developed are adequate models

for each of the nonstationary time series, or signals, of interest (e.g.,

the vocabulary words in the SIIWR problem).
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During the training phase, a suitable preprocessor is developed to map

(or transform) an arbitrary input signal s(t), t > 0, into a discrete

observation sequence [O(t), t = 1, 2, .. .}. A good description of one

way this is done for the SIIWR problem is given in reference 1

(pp. 10-17-1078). The preprocessor is also utilized in the classification

phase as depicted in figure 1. The observation sequence is truncated to the

length T required for the HMMs, where T is a positive integer. The

truncated sequence 0T = (O(t), t = 1, 2, ..., T} is then passed to the

HMM recognizers. Each HMM recognizer evaluates the posterior likelihood

that 0T comes from a time series characterized by that HMM. Denote the

i-th hidden Markov model by HMM(i). The i-th recognizer thus computes the

posterior likelihood function

fi(0 T Pr[OT 1 0T c HMMi p)

where 0T c HMM(i) denotes the hypothesis that the observation sequence

0T is a realization of HMM(i). The maximum of the p computed posterior

likelihoods is assumed to identify, or classify, the original signal s(t).

In practice, some kind of tie-breaking rule must be defined and some

threshold must be set to identify signals for which HMMs have not been

trained. The likelihood function (1) can be computed with only n2T

multiplications (where n is the number of states in the Markov chain) by

using the forward-backward algorithm.
2

The misclassification rate (or false alarm rate) of the system depicted

in figure 1 can be estimated by simulation after training is completed.

Alternatively, the misclassification rate of signal i as signal j can be

determined from the conditional cumulative distribution functions

F ij(x) = Pr[fi(OT) < x 1 0T c HMM(j)] (2)

by using classical detection and estimation methods to develop receiver-
3

operator characteristics (ROC) curves. The validity of misclassification

rates based on F ij(x) depends on the validity of the assumption that the

HMMs developed are adequate models for the signals of interest. Agreement

between theory and simulation would support the hypothesis that the HMMs

2
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really do represent the signals. Unfortunately, algorithms for calculating
F ij(x) directly from the HMM parameters are not known. For later

reference, note that F. (x) * Fj (x) in general.

The moments of dF ij (x) are defined by the Riemann-Stieltjes integral

M ij(k,T) = x dF . (x) , k = 0, 1, 2, .... (3)

If F ij(x) is differentiable with derivative F ij(x), then the moments

can be written equivalently as the Riemann integral

I-
M. (k,T) = x F'(x) dxijif x) dx

The moments depend on the length T of the observation sequence because

F ij(x) depends on T, as seen from equation (2). They uniquely determine

dF ij(x) when they are all finite and the characteristic function of
13 4

dF ij(x) has a positive radius of convergence. From equations (1) and

(2), it is clear that dF ij(x) = 0 for x < 0 and for x > I. Thus, from

equation (3),

1

Mij(kT) = O, xk dFij(x) < 1

so that all the moments are finite. The series

@ij (  V! Mij~vT

U=O

for the characteristic function of dF ij (w) is absolutely convergent with

an infinite radius of convergence because, for fixed w0 0 0, each summand

is bounded above in magnitude by jwO1V/v! and thus the radius of

4
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convergence must be at least as large as exp( Io[). Consequently, the

moments of dFi (x) uniquely determine dF ij(x) and, thereby, F ij(x).

This paper presents an algorithm for computing explicitly the moments

of dFii (x) up to any desired order directly from the given underlying

parameters of the HMMs involved. The only essential assumption made is the

usual one that the HMMs have a finite number of states. However, it is not

required that all HMMs have the same number of states.

This paper also presents examples that compare the first two

Lheoretical moments with simulation results. The examples are of

independent interest because they exhibit important features of posterior

likelihood classification based on ergodic and left-to-r'lht HMMs that

theoretical analysis alone would not show as easily -r as quickly. These

features are important because they indicate how the internal structure of

HMMs impact the performance c" the system depicted in figure 1.

5
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II. THE MOMENT ALGORITHM

The reader is assumed to be familiar with such first principles of HMMs

as given in reference 2. It is not, however, necessary to reaJ this section

to undei tand the examples provided in section 11.

A. FINITE SYMBOL HMMs

Let HMM(u) be a hidden MarKov process with n(u) states, u = 1 ,

Subscripted indices will always be written as functions of their subscripts

(for instance, n(u) is used instead of n ) to avcid the later use of

subscripted subscripts. Let the state transition probability matrix of

HMM(u) be denoted as Au = [au( ),( ) ,  for i(v), j(u) I.

n(u). Let the initial state probability vector of HMM(u) be denoted as
W = [ i(V)], for i(u) = 1, ..., n(u).

We first restrict attention to finite symbol HMMs; that is, we suppose

that every observation sequence 0T = [O(t), t = l .... Tj is such that

O(t) C V = [Vl, .. ., Vmj I

where V is the set of all possible output symbols of the preprocessor. The

true nature of the symbols in V is of no importance here. HMMs assume that

0(t) is a random variable whose probability density function depends on the

current state of the Markov process. Let the discrete probability density

uBfunction for HMM(u) when it is in state i(v) be denoted as i(u) for

... n(). Thus, each B is a row vector of length m.

Stacking these row vectors gives the n(v)-by-m symbol probability matrix

Bl

B2

B = [b .U),j ) I

8n(u)
bB
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Note that

b ( b=
j(V) j(U))

where we define

bi()(O(t)) = Pr[O(t) I HMM(u) and Markov state =

The assumption that the training phase is completed means that the

parameters X = (w , Au, Bu) are known.

For discrete symbol HMMs, the cumulative function F ij(x) is an

increasing step function with a finite number of jump discontinuities. Let

X . denote the set of all values of x for which Fi (x) is

discontinuous. It follows that dF ij(x) = 0 if x is not in X.. and that,

for x in X..,13

dF ij(x) = Fij(x ) - F ij(x-)

= Pr[fi (0) = x 1 0T c HMM(j)] (4)

Substituting equation (4) into equation (3) gives

M ij(k,T) E x k Pr[f iOT = x 1 0T c HMM(j)]

xcxi.

= - i(OT)} k  Pr[OT 1 0T c HMM(j)]

0 T

] (Pr[ OT 1 0T c HMM(i)3}
k Pr[OT 1 0T c HMM(j)] (5)

0 T

It is clear from equation (5) that Mi (k,T) M.i (k,l) in general for

k > 1. For k m I, however, we have M ij(,T) = M..(l,l) for all i, j,

and I.
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The expression in equation (5) is computable directly from the

parameters of HMM(i) and HMM(j); however, such a calculation is not

practical except for small T because the computational effort increases

exponentially in T. To see this, note that the forward-backward

algorithm 2  calculates Pr[OT I 0T c HMM(u)] using n2 (u) T multipli-

cations. Thus, each summand in equation (5) requires k[n(i) n(j)] 2 T 2

T
multiplications. There are m different possible observation sequences

0T = (O(t), t = 1, ..., T} because each O(t) can be any one of the m

output symbols in V. Thus, direct calculation of equation (5) requires a

total of k[n(i) n(j)] 2 T 2 m multiplications.

We now derive a recursion for equation (5) that requires computational

effort that grows only linearly with T. The recursion is derived for a more

general expression that contains equation (5) as a special case. For k = 1,

2, ..., define

k

R(k,T) = *I-- Pr[OT 1 0T c HMM(u)] (6)

0 T  V=l

The application of equation (6) to compute any moment from equation (5) is

straightforward; for example, R(k+lT) equals M2 1 (k,T) when HMM(2) = ... =

HMM(k+l). Note that R(k,T) can be interpreted as a joint moment of HMMs.

The derivation of the recursion for R(k,T) proceeds as follows. The

forward recursion portion of the forward-backward algorithm gives the

expression

n(u)

Pr(OT 0T c HMM(u)] = T(j(v)) , (7)

j(v)=l

where, for 2 < t < T,

=t V M )) = Ul(i(v)) a" )b (O(t)) , (8)

'(v)=l

and

I v ) ) = v) b (00)) (9)

8
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Substitute equation (7) into equation (6) to obtain

n(u) k
R(k,T) =, V U- II:(V))

j ( )=l 0 T  u;=I

n(u) JT (J( ), ..., j(k)) ( 0)

where we define for t = 1 .. , T

k

V ..., j(k)) V t(j(v)) (11)

0 tU=10t l

One interpretation of vT is that it equals R(k,T) given that HMM(v) must

• nd in state j(v,), v=I ..., k. We seek a recursion for PT. First

suppose that 2 < t < T. Then, substituting equation (8) into equation (11)

gives

lt(J(1) ... , j(k)) & ]t7 -I(i(v)) ai(V),j(V )  bJ( )(O(t))

0 t  =I li( t )=l

n() kO II 1k~l '  llkilb1

21 ri t-I i  ri i(U)J) ,ji i(i) t)

i(1u)=: tI -V=I vl-~
U=l ..... k

ai(U) j Vt-I 10(i() b V() (O(t)]E1- E~ =~),( E I~

u=l ,... ,k

• l m I |



TR 7989

Because ct- (i(v)) does not depend on the last symbol O(t) in thet -1
observation sequence 0 t = (0(1), ..., 0(t)}, we have

lit (J ( 1 ) . , i ( k ) )

n(v ,j) k a-ICL iM v)  k b V )(O (t ))

i(u)=l U=l 0 t l Ot V=l
V=l ..... k

Because the sum over 0(t) is independent of the observation sequence Ot- l

= [0(l), ... , Q(t-l)}, as well as the indices i(v), and because of

equation (11), we have

jt(J(1), . .. , j(k))

n(u) Fk
= rcj(1), . j~k)) ., a Ut-Il(i(1), .. , i(k))

(12)

where

k

r(j(I) . j(k))= I bu (M), , j(V)Ot)
O(t) V=l

m k

b I)(Vs) (13)

s=l U=l

Equation (12) is the desired recursion for 2 < t < T. For t = 1,

substituting equation (9) into equation (11) gives

k

lJ( j, j(k)) = T I (j(u))

0(1) V=l

10
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(k )k
E b)(00))

k

r(j(), ... , j(k)) I rj(v) (14)

U=l

Let k = 1. From the definition, it is clear that R(l,T) I for all T,

regardless of HMM(l), because the sum in equation (6) is over all 0 T .  To

independently check the recursion (12)-(13), note that, from equation (13),

m

r(j(l)) (1)(V) = < t < T
s=1

From equation (14), we have

I= j(l)

Hence, from equation (10), we obtain

n(l)

R(ll) = %__=

The recursion is verified for T = 1. For T = 2, from equation (12), we have

n(1)

i(1 )=l

n(l)

21i() ai(), !

i(l)=l

11
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so that, from equation (10),

n( 1) (n(l)

R(,2) = i(l) ai(1),j(1)
j(1)=l ii(1)=l

n(i) a(n())

i(1)=1 lu)j(1)=l

and the recursion is verified for T = 2.

The first nontrivial special case is k = 2. In this case, R(2,T) is

identically the first moment M1 2(l,T). From equation (12), we have for

2<t<T

n(1) n(2)

lt(j(l),j(2)) = r(j(1),j(2)) V t (i( ),i(2)) a ), ai2

i(l)=l i(2)=l

and, from equation (14),

1 2
p(j(l),j(2)) = r(j(l),j(2)) j() 1 j(2)

where, from equation (13),

m

r(j(1),j(2)) = '(l )(Vs) (2) (V S)

s=l

From equation (10), then, we have

n(1) n(2)

R(2,T) = E uT(J(l),j(2))

j(l)=l j(2)=l

12
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Computation of R(2,T) = M1 2(l,T) is therefore not excessively laborious.

The evaluation of R(k,T) using the recursion (12) is properly broken

into two parts. The first is the precalculation of r(j(l), .... , j(k)) for

every possible value of the indices j(v). This requires (k-l)m Nk

multiplications and Nk storage locations, where

storag loatoswhr

N = net) (15)

is the geometric mean of the number of different states in the various HMMs

and is not necessarily an integer. If N = 8 and if there are m 16

different observation symbols, then computing and storing r for k = 6

requires 262144 storage locations and 2.1 x 107 multiplications. Storage

is clearly more crucial an issue than multiplications.

It is possible in some cases to utilize the underlying symmetries of r

to reduce both storage and computational effort. For example, if HMM(2) =

= HMM(k+l), then

r(j(1),j(2), ..... j(k+l)) = r(j(l), a(j(2)), ..., o(j(k l))) (16)

for every permutation c of the k integers j(2), ... , j(k+l). The proof of

equation (16) follows easily from equation (13) because multiplication is

commutative. Thus one only need consider indices that satisfy

1 s j(1) s n(l) and 1 s j(2) S j(3) s . :.. j(k+l) s n(2)

The number of ordered index sets (j(u)) is equal to the number of

combinations of n(2) letters taken k at a time, when each letter may be

repeated any number of times up to k. Storage is therefore proportional to

Nk+l (n(2)(n(2) + 1) . k. (n(2) + k ) n(l)

13
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which is significantly smaller than the [n(2)] k n(l) storage that would

otherwise be necessary. The total multiplication count is also reduced

proportionately.

Once r has been computed and stored for a given value of k, the

recursion (12) can be computed for any length T of the observation

sequence. For each of the Nk sets of indices (j(to)} in equation (12),
k

the sum over all N indices (i(u)} must be undertaken. This sum

appears to require k Nk multiplications; however, by using the nested form,

n(l) n(2) 1~k
aM(),W() E ... E ai(k),j(k ) "t-l~i1 .. ~).

i(1)=l (2)=1 (k)=1

it is possible to use approximately

Nk k N2 N (N N) (Nk -1)

instead. If lower order terms are neglected, computing one iteration of

equation (12) requires about N2 k multiplications. For an observation

sequence of length T, computing UT requires on the order of N 2kT

multiplications. If N = 8 and T =32, then 2.2 x1 multiplications are

required for k = 6. Assuming a multiplication takes one microsecond, the

calculation requires 611 hours and is clearly impractical.

Significant reduction in computational effort is possible in some cases

by utilizing the underlying symmetries in vt" For example, if HMM(2) =

= HMM(k l), then

Vt(j(l),j(2), ... , j(k+l)) = ,t(j(l), 0(j(2)), .... o(j(k+l))) (17)

for every permutation a of the k integers j(2), ... , j(ki-l). The proof of

equation (17) follows easily by induction from equation (12) because

multiplication is commutative and because r satisfies the same symmetry

property (16) in this case. Thus, the recursion (12) need be computed for

14
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only Nk~l sets of indices. The total multiplication count is reduced to
2 mutplktin

4NkiT, which is significantly smaller than the N2k T multiplications

that would otherwise be needed. For the above example requiring 611 hours,

if N = n(1) = n(2) = 8 and if the symmetry (17) is utilized, the calculation

would be reduced to roughly a 96-minute calculation. Utilizing symmetry is

clearly significant in that it can turn an impractical long calculation into

a feasible shorter one.

Underflow is potentially a problem when the recursion (12) is computed.

It can be easily overcome in exactly the same manner as pointed out in

reference 2 for preventing numerical underflow during the calculation of the

forward-backward algorithm. Specifically, let lt be computed according to

equation (12) and then multiplied by a scale factor ct defined by

c t  = t(j(1), ... , j(k)) (1a)

Then use the scaled vdlues of Vt in the recursion (12) to compute pt+l'

which is in turn scaled as shown in equation (18). If we continue in this

fashion and recall the expression in equation (10), it follows that

R(k,T) = ct (19)

Because the product cannot be evaluated without underflow, we compute instead

T

log R(k,T) = -E log ct (20)

t=l

Any convenient scale factor can be used instead of equation (18). A

potentially useful one might be to take Tt = Nk. Using Tt would

eliminate the effort of computing the sum in equation (18) before scaling.

15
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B. CONTINUOUS SYMBOL HMMS

The objective of this section is to show that the moment algorithm for

discrete symbol HMMs can be carried over essentially unchanged to continuous

symbol HMMs. In fact, it holds also for continuous vector symbol HMMs;

however, only the continuous symbol HMMs are treated here for simplicity.

Throughout this section, it is assumed that each output symbol 0(t) is a

real random variable defined on some underlying event space, V. The

probability density function of 0(t) is uniquely defined for each state i(V)

= 1, ..., n(i) of each HMM(v), v = 1, 2, ..., and is denoted as

b (x). Thus, for real numbers a and B with a < 0, we have

b (x) dx = Pr[a < 0(t) < B I HMM(u) and Markov state = i(u)] (21)

An observation sequence 0 = [xt, t = 1, 2, ..., T) is a sequence of

real numbers xt, with xt being a realization of the random variable

O(t). The posterior likelihood function f (0 T) is now a probability

density function for continuous symbol HMMs, as opposed to a simple

probability (see equation (1)) for discrete symbol HMMs. Thus,- for real

vectors V and B with '&< B, we have

f f(OT) dOT = Pr[- < 0T 0T C HMM(u)] , (22)

where 0T c HMM(u) denotes the hypothesis that 0T is a realization of

HMM(u) and dOT = dx ... dxT .

The conditional cumulative distribution functions Fi(x) are defined

by equation (2), just as for discrete symbol HMMs. From equation (3), we

have the moments

16
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M ij(k,T) f xk dF ij(x)

f k Pr[x < fi(OT)< x + dx I 0T c HMM(j)] dx

Sf. [f i(OT)} k f COT) dOT , (23)

T-fold

which is the continuous analog of equation (5). It is clear from

equation (23) that M ij(k,T) = Mji(k,T) in general only for the special

case k = 1. The analog of equation (6) for continuous HMMs is

R(k,T) = f f 1 (T) dOT (24)
E Ul

T-fold

The forward-backward algorithm for computing the posterior likelihood

function for continuous HMMs is modified as follows:

f = ( )(j(v)) , (25)
j(u):l

where aT(j(v)) is computed exactly as given by the recursions (8) and

(9), with the only difference being that b" (0(t)) in equation (8) is
j(V)

now interpreted as the probability density function implicit in

equation (21). Consequently, equation (10) still holds exactly if we define

17
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t(i(l), ..... j(k)) f ... t(j(v)) dOt (26)

t-fold

as the analog of equation (11). Proceeding as before with t-fold integrals

replacing t-fold summations gives exactly the recursion (12), but with the

one-dimensional integral

k

rum, ... , j(k)) J ji b (x) dx (27)

in place of equation (13).

The remarks in the preceding section concerning storage, multiplication

counts, and symmetry properties all apply for continuous symbol HMMs. The

primary difference is that equation (27) requires an integral evaluation

instead of a finite sum as in equation (13). This evaluation increases the

initial computational overhead, but once equation (27) is computed, the

algorithm (12) proceeds exactly as before.

1B 18!



TR 7989

III. COMPARISON OF THEORETICAL MOMENTS WITH SIMULATION

Ergodic Markov chains are those for which it is possible to transition

from every state to every other state, although not necessarily in one

step. Left-to-right Markov chains are those for which transitions to lower

numbered states are not allowed, that is, have probability zero. These two

types of chains are sufficiently different that they are considered

separately in the examples.

One interpretation is that ergodic HMMs are models of quasi-stationary

signals, while left-to-right HMMs are models of transient signals that

ultimately become stationary (because the highest numbered state is not

exited once it is entered). One might therefore expect these two types of

HMMs to impact the performance of the maximum likelihood classifier depicted

in figure 1 in different ways. The three examples given in this section

support this expectation.

Using the above interpretation, the examples may be described as

follows. The first example shows that maximum likelihood classification

based on HMMs can reliably distinguish between sufficiently long quasi-

stationary signals with a reasonable amount of computational effort. The

second example shows that short quasi-stationary and transient signals look

significantly different to the HMM transient recognizer, but not to the HMM

recognizer based on the quasi-stationary signal. The third example shows

that noisy observations of transient signals adversely affect classification

performance by making the transient signal appear to have a stationary

component, which is then misclassified by the HMM transient recognizer.

A. TWO ERGODIC HMMS

HMM(l) and HMM(2) are five-state, eight-symbol ergodic models whose

parameters are given (rounded to three significant decimals) in tables 1

and 2, respectively. HMM(l) clearly generates observation sequences of

uniformly distributed symbols. HMM(2) is more complex in structure, but

every symbol can be generated in every state. The fundamental question ot

interest here is the following. How long must an observation sequence be to
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guarantee that maximum posterior probability classification (described in

the Introduction) will be 98 percent reliable? We will give what may best

be 6escribed as a semiempirical answer to this question.

Because of the nature of HMM(l), it is easy to see that

f 0 PrFOT 0. c HMM(l)] 8 -

In other words, the posterior likelihood function based on HMM(l) is

constant because all observation sequences are equally likely if 0~ TC

HMM(l). In particular, f1 0 T ) cannot distinguish 0 T c HMM(l) from

0 T HMM(2) and thus is useless for classification.

The posterior likelihood function based on HMM(2), instead of HMM(l), is

useful for classification. Ten-thousand observation sequences 0 T of each

HMM were generated, and the posterior probability f 2(01T) was computed

Table 1. Parameters of HMM(l)

NUMBER OF MARKOV STATES = 5

NUMBER OF SYMBOLS PER STATE =8

INITIAL STATE PROBABILITf VECTOR:
2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol

TRANSIlTION PROBABILITY MATRIX:
2.OOE-Ol 2.OOE-Ol 2.QOE-Ol 2.OOE-Ol ?.OOE-Ol
2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol
2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE-Ol
2.OOE-Ol 2.OOE-Ol 2.OOE-Ol 2.OOE -01 2.OOE-Ol
2.OOE-Ol 2.OOE-Ol 2.00E-01 2.OOE-Ol 2.OOE-Ol

SYMBOL PROBABILITY MATRIX (TRANSPOSED):
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01

1 .25E-01 1 .25E-01 1 .25E-01 1 .25E-Ol 1 .25E-01

1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01
1 .25E-01 1 .25E-01 1 .25E-01 1 .25E-01 1 .25E-01
1 .25E-01 1 .25E-01 1.25E-01 1 .25E -01 1 .25E-01
1.25E-01 1.25E-01 l.25E--Ol 1.25E-01 1.25E-01
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Table 2. Parameters of HMM(2), Rounded to
Three Significant Digits

NUMBER OF MARKOV STATES = 5

NUMBER OF SYMBOLS PER STATE = B

INITIAL STATE PROBABILITY VECTOR:
I.OOE-O0 O.OOE*O0 O.OOE+OO O.OOEO0 O.OOE+O0

TRANSITION PROBABILITY MATRIX:
1.40E-Ol 2.35E-01 3.08E-01 1.24E-01 1.94E-Ol
1.40E-O1 1.14F-O. 2.99E-01 2.13E-Ol 2.34E-01
4.37E-02 3.20E-01 1.72E-Ol 1.27E-Ol 3.38E-01
9.73E-02 4.97E-Ol 1.53E-02 1.15E-Ol 2.75E-01
2.36E-01 2.49E-02 4.27E-01 2.82E-01 2.98E-02

SYMBOL PROBABILITY MATRIX (TRANSPOSED):
1.81E-Ol 1.22E-Ol 7.89E-03 1.48E-Ol 7.04E-02
1.39E-Ol 8.28E-02 3.23E-02 9.13E-Q2 1.33E-Ol
2.67E-02 1.60E-Ol 5.87E-02 1.08E-Ol 2.34E-01
l.79E-Ol 1.66E-O1 2.18E-Ol 1.30E-Ol 5.97E-02
1.56E-Ol 1.58E-Ol 2.15E-Ol 2.09E-Ol 2.35E-01
1.19E-O1 5.75E-02 l.lIE-Ol 1.02E-Ol 1.03E-Ol
l.76E-Ol 1.32E-Ol 2.40E-01 6.61E-02 1.76E-02

2.37E-02 1.22E-Ol 1.17E-Ol 1.46E-Ol 1.47E-Ol

using the forward-backward algorithm. Figure 2 shows a histogram of the

natural logarithm of dF22 (x) for T = 25. The observation sequences are

thus matched to the posterior likelihood function. Figure 3 shows a

histogram of log dF21(x) for T = 25. In figure 3, then, 01 is

mismatched to the likelihood function. As is clear from figures 2 and 3,

the difference between the mean values of the log likelihood functions is

about 1.4 standard deviations. Thus, the potential exists for using

log dF22 (x) to classify observation sequences; however, T = 25 is not long

enough to classify with high reliability.

A useful observation drawn from figures 2 and 3 is that the probability

density function of log dF2i(x) is nicely approximated by the normal

distribution. Let vii and aij denote the mean and standard deviation of

log dF ij(x). Then, if dFi (x) is ;og-normal, it is easy to show that

1.. and a. . are related to the moments M. .(k,T) by the formulas
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= 2 log M ij(l,T) - (1/2) log Mij(2,T) (28)

22 = log M ij (2,T) - 2 log M ij(1,T) (29)

It is stressed that equations (28) and (29) hold exactly if and only if

dFii (x) is truly log-normal. For finite symbol HMMs, dFii (x) is

necessarily discrete, so that both equations (28) and (29) must be viewed as

approximations. Sufficient conditions under which it may be proved that

dF ij(x) is, in some sense, approximately log-normal are unknown.

Table 3 gives a comparison between the mean and standard deviations of

log dF ij(x) estimated from 10000 observation sequences 0T  and those

calculated from equations (28) and (29). This table shows good agreement

between the approximations of equations (28) and (29) and the sample means

and variances. It also establishes that observation sequences of length

T = 400 are long enough to distinguish between 0T c HMM(l) and 01 C

HMM(2) with high reliability. That is, the difference between the mean

value of log dF2 1 (x) and the mean value of log dF2 2 (x) is about 5.2

standard deviations. Assuming log dF2 1 (x) and log dF22 (x) are normally

distributed, as they appear to be, then the reliability of the maximum

posterior classifier is about 98 percent.

Computing the posterior likelihood function f2 (OT) for T = 400

requires n2T = 10000 multiplications. This is about the same level of

effort as computing one 512-point FFT, which requires (2)(512)(log2 512) =

9216 multiplications. In other words, the computational requirements of

f2 (04 0 0 ) are small enough for practical application. Furthermore, the

forward-backward algorithm for computing f2(OT) is mathematically

equivalent to a nested sequence of matrix-vector multiplications.

Consequently, it is possible to reduce total computation time by the design

of a "black box" to exploit this special structure in hardware.

B. MIXED ERGODIC AND LEFT-TO-RIGHT HMMS

HMM(3) is a five-state, eight-symbol left-to-right model whose

parameters are given in table 4. It has a structure that might conceivably
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g

-60 -57 -54 -51 -48 -45 -42

Figure 2. Histogram of 10000 Values of log dF2 2 (x) for T = 25.
(The Normal Curve Has the Sample Mean and Variance Given in Table 3.)

-60 -57 -54 -51 -46 -45 -42

Figure 3. Histogram of 10000 Values of log dF2 1(x0 for T = 25.

(The Normal Curve Has the Sample Mean and Variance Given in Table 3.)
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Table 3. Comparison of Two Estimates for the
Mean and Standard Deviation of log dF2j(x) for j = 1, 2

Mean Value Standard Deviation

T Sample Eq. 28 Sample Eq. 29

= 1 5 -10.8 -10.6 0.95 0.71
10 -21.3 -21.2 1.11 0.92
15 -31.9 -31.8 1.24 1.10

20 -42.4 -42.4 1.35 1.25
25 -53.0 -52.9 1.47 1.38
50 -105.8 -105.8 1.93 1.91

100 -211.4 -211.5 2.62 2.67
200 -422.6 -423.0 3.60 3.76
400 -845.0 -845.8 5.09 5.30

j = 2 5 -10.1 -10.1 0.69 0.59
10 -20.3 -20.3 0.90 0.84
15 -30.6 -30.5 1.08 1.03
20 -40.8 -40.8 1.23 1.20
25 -51.0 -51.0 1.37 1.34
50 -102.1 -102.1 1.92 1.90

100 -204.4 -204.4 2.66 2.69
200 -408.9 -409.0 3.77 3.80
400 -818.0 -818.1 5.33 5.37

arise in the SIIWR problem. Note that HMM(3) never leaves the fifth state

once it is entered. Consequently, all sufficiently long observation

sequences ultimately contain only the three symbols V6 f V7 9 and V8.

Note also that the symbol V occurs if and only if the fifth state has

been entered. It follows that an observation sequence 0 containing the

symbol V8 and subsequently containing any of the five symbols V, V2 ,

V3V V or V5  must have posterior likelihood zero; i.e.,

f3(OT) = 0. Other forbidden symbol sequences may also be noticed. It

will be seen that these facts make f3( 0 T) a powerful discriminator

against ergodic observation sequences. To summarize briefly, this example

will show that short observation sequences of quasi-stationary and transient

HMMs look very different to the transient HMM recognizer. On the other

hand, all observation sequences look somewhat alike to ergodic HMM

recognizers.

When HMM(3) enters its fifth state, it becomes stationary and,
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Table 4. Parameters of HMM(3)

NUMBER OF MARKOV STATES = 5

NUMBER OF SYMBOLS PER STATE = 8

INITIAL STATE PROBABILITY VECTOR:
l.OOE+OO O.OOE+O0 O.OOE+O0 O.OOE+O0 O.OOE+OO

TRANSITION PROBABILITY MATRIX:

6.OOE-01 4.O0E-Ol O.OOE+O0 O.OOE-O0 O.OOE+-O0
O.OOE OO 7.OOE-Ol 2.OOE-O| l.OOE-Ol O.OOE+OO

O.OOE+OO O.OOE*OO 6.OOE-Ol 4.00E-Ol O.OOE+OO

O.OOE+OO O.OOE+O0 O.OOE O0 7.OOE-Ol 3.OOE-O1

O.OOE O0 O.OOE O0 O.OOE+OO O.OOE+O0 l.OOE+OO

SYMBOL PROBABILITY MATRIX (TRANSPOSED):

9.OOE-Ol l.OOE-Ol O.OOE+OO O.OOE+O0 O.OOE+OO

l.OOE-Ol 6.OOE-Ol O.OOE OQ O.OOE+O0 O.OOEO0

O.OOE+O0 2.OOE-Ol 3.OOE-Ol O.OOE+O0 O.OOEO0

O.OOE+O0 l.OOE-Ol 6O0E-Ol l.OOE-Ol O.OOE+OO

O.OOE+O0 O.OOE OO l.OOE-Ol 2.OOE-Ol O.OOE+OO

O.OOE+OO O.00E4-O O.OOE+OO 4.OOE-Ol l.OOE-Ol

O.OOE+O0 O.OOE+O0 O.OOE+O0 3.OOE-Ol 6.OOE-O

O.OOE OO O.OOE-O O.OOE+OO O.OOE O0 3.OOE-Ol

consequently, significantly less interesting. Insight into the length of

the transient portion of HMM(3) observation sequences is gained by

estimating the first passage time of HMM(3) into its fifth state, that is,

the number of transitions in the Markov process before its fifth state is

entered. The mean and variance of first passage times may be computed6

explicitly; however, simulation was used here instead. In 10000

observation sequences generated for HMM(3), it was found that the mean and

standard deviation of the first passage time was 10.9 and 4.8,

respectively. The least first passage time was 3 transitions, and the

largest first passage time was 43 transitions. Thus, observation sequences

almost certainly become stationary for t > 50.

Figure 4 and table 5 clearly show that dF3 3 (x) is a "well-behaved"

distribution even though HMM(3) is not ergodic. However, dF3 3(x) is not

as closely approximated by a log-normal distribution as are dF2 1(x) and

dF 22(x), as evidenced by the discrepancy in table 5 between the sample
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I

-45 -40 -35 -30 -2s -20 -15

Figure 4. Histogram of 10000 Values of log dF3 3 (x) for T = 25.
(The Normal Curve Has the Sample Mean and Variance Given in Table 5.)

StdLiStics and the statistics that would hold if dF3 3 (x) were truly

log-normal.

Ten-thousand observation sequences of HMM(l) and HMM(2) were generated

and the posterior likelihood f3(OT) was computed using the forward-

backward algorithm. The observation sequences are thus mismatched to the

posterior likelihood function. Table 6 gives the number of sequences for

which f3( 0 T) = 0. Better than 99-percent rejection of the simulated

ergodic HMM observations was attained when T = 10, that is, when the

observation sequences were about as long as the mean first passage time of

HMM(3) into state 5. Total rejection of the 10000 ergodic observations

occurred for T = 20.

The ability of f3( 0T) to reject observations of 0T c HMM(2) is

much more impressive than the f2(0 T) rejection of 0T c HMM(3). The

lack of symmetry Fi (x) o F.i (x) is striking in this instance. Table 7

gives two estimates of the mean and standard deviation of log dF2 3 (x), and

figure 5 is a histogram of the case T = 25. The mean values of the 10000

samples and those predicted by equation (28) agree very well; however,
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Table 5. Comparison of Two Estimates for the Mean and Standard
Deviation of log dF3 3(x)

Mean Value Standard Deviation
T Sample Eq. 28 Sample Eq. 29

5 - 5.6 - 4.9 1.92 1.13
10 -12.8 -11.8 2.30 1.91
15 -18.6 -18.2 2.72 2.33
20 -23.5 -22.6 3.22 2.29
25 -28.1 -26.3 3.61 2.15
50 -50.5 -47.2 4.59 2.75

Table 6. Number of 0T c HMM(i) for Which

f3(OT) = 0, i = 1, 2

T HMM(l) HMM(2)

5 9389 9172
10 9937 9918
15 9997 9988
20 10000 10000

Table 7. Comparison of Two Estimates for the Mean
and Standard Deviation of log dF2 3 (x)

Mean Value Standard Deviation
T Sample Eq. 28 Sample Eq. 29

5 - 10.8 -10.8 0.51 0.60
10 - 21.4 -21.4 0.91 0.89
15 - 32.0 -32.0 1.02 1.04
20 - 42.6 -42.7 1.04 1.15
25 - 53.2 -53.5 1.05 1.12
50 -106.4 -106.8 1.11 1.43

dF23 (x) is not as well approximated by a log-normal as dF 22(x) and

dFl (x), as seen from the discrepancy in the sample versus the predicted

standard deviations. In any event, it is clear by comparing table 7 with
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-60 -ST -54 -51 -48 -45 -42

Figure 5. Histogram of 10000 Values of log dF2 3(x) for T = 25.
(The Normal Curve Has the Sample Mean and Variance Given in Table 7.)

the lower half of table 3 that f2(OT) cannot reliably distinguish 0 c

HMM(3) from 0T c HMM(2) when T = 50. However, since the first passage

time of HMM(3) is almost certainly less than T = 50, increasing the

observation sequence length to improve reliability is not appropriate if the

underlying intent is the classification of the transient portion of HMM(3).

C. LEFT-TO-RIGHT HMM WITH NOISE

In this example, the effect of noise on the maximum posterior likelihood

classifier is assessed for the left-to-right model HMM(3). The right way to

study noise in finite symbol HMMs is to add the noise to the original time

series s(t) and then analyze the particular preprocessor under consideration

to determine the noisy symbol sequence. However, no particular preprocessor

is proposed here, and so we resort to modeling noise in much the same way

that Shannon modeled noisy discrete memoryless channels. 7  This approach

can give an indication of the successful classification rate as a function

of the probable number of incorrect symbols in an observation sequence, but

it cannot provide an assessment of the effect of signal-to-noise ratio on
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classification because such an assessment requires knowledge of the

preprocessor.

Denote by hkj the probability that the observation symbol Vk is

altered to symbol V. by the noise mechanism and define the m-by-m noise3
probability matrix H = [hkj]. It is assumed that H is independent of the

state of the Markov chain and of time t. Consequently, the output of a

given HMM corrupted by noise is equivalent to another HMM that is

noiseless. If x = (ir, A, B) are the parameters of a given HMM with noise

matrix H, the parameters of the equivalent noiseless HMM are = (IT, A,

BH). The proof is straightforward: the product bik h is the

probability that the state of the Markov chain is i and that symbol j is

produced, given that symbol k was the output of the given HMM. The sum over

k of bik hkj gives the component b.j of the equivalent noiseless HMM

symbol probability matrix B. Clearly, b.. equals the (ij) component of

the product BH, so that B = BH.

The noise probability matrix H must be row stochastic; that is, every

row sum must equal one. The HMM-generated symbol Vk is altered by noise

to one of the available symbols, so that row k must sum to one.

Because H has row sums equal to one, the matrix B is a valid symbol

probability matrix for the equivalent noiseless HMM; that is, each row of

= BH sums to one. We have

m m m

j=1 j~l kzl

m m

E b ik EI h kj
k=l j~l

m

EZ bik

k=l

=21
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0The worst case noise probability matrix, denoted H , has the constant

entry = 1/m for all i and j. In this case,

m m

ij E bik kj m L .=k m
k=l k=l

Consequently, HMMs with noise probability matrix H0  are indistin-

guishable. In fact, H0 makes all HMMs statistically equivalent to the

ergodic HMM(l) given in table 1.

Let Pr[Vi] be the relative frequency of occurrence of the symbol Vi
in observation sequences of length T before the addition of noise. Thus, we

have E Pr[V.] = I. After alteration by noise, the probability of

correct occurrences of V in 0T is then Pr[Vi] h. .. The probability

that the symbol O(t) c 0T is correct is

m

D = Pr[Vi] hii (30)
i =1

and the probability that O(t) is incorrect is

ET = 1 - DT  (31)

For the examples here, given a specific value of E we choose the simple

noise probability matrix H defined by

hi I - E T  , all i ,

(32)
ET

h.. Tal j
ij m - 1 * all i j

For this choice of H, 0T is independent of the actual values of Pr[Vi,

as is clear from equation (30) and the fact that Z Pr[V.] = 1.
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Noise tends to make observations of all HMMs look like observations of

HMM(l), and ergodic observation sequences tend to have forbidden symbol

sequences for the left-to-right HMM(3). The first natural issue is

therefore to determine how many forbidden symbol sequences occur as a

function of the incorrect symbol probability ET. Table 8 gives the

results for various values of T and ETo based on simulations of 10000

observation sequences. It shows that forbidden symbol sequences are less

likely for small T than for large T. This table also shows that noisy

observations of HMM(3) do not have as high a proportion of Forbidden symbol

sequences as observations of HMM(l) and HMM(2), even for ET = 10 percent,

as can be seen by comparing tables 6 and 8. One may conclude from table 8

that ET must be small and T must be short to minimize misclassification

due to forbidden symbol sequences. For instance, if T = 25 and

ET = 0.001, the misclassification rate is apparently at least

1.21 percent. Shorter T, however, causes smaller shifts in the statistics

in the likelihood function and thus increases the misclassification rate.

Consequently, a tradeoff exists between short T and long T.

The total misclassification rate can be expressed as the sum of the

misclassification rate due to forbidden symbol sequences and the

misclassification rate due to noise-induced shift in the statistics of the

nonzero values of the posterior likelihood function. We examine the total

misclassification rate for HMM(4), which is defined to be the HMM equivalent

Table 8. Number of 0T c HMM(3) + Noise
for Which f3(OT) = 0 at Various Values of ET

ET

T 0.1 0.01 0.001 0.0001

5 2194 236 23 1
10 3906 443 37 1
15 5305 651 64 11
20 6625 986 103 13
25 7643 1303 121 11
50 9643 2684 345 34
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to HMM(3) with the noise matrix H given by equation (32) with E = 0.001.

The parameters of HMM(4) are given explicitly in table 9.

Denote by F. 0(x) the cumulative distribution function

Pr[O < fi(OT) < x I 0T c HMM(j)] , for x > 0

F = (33)

O, for x < 0

Ten-thousand observation sequences 0T were generated from HMM(4) for I =

25. As given in table 8, 121 sequences resulted in zero posterior

likelihood function values (that is, f3(0 T) = 0) and the remaining 9819

nonzero values of f3( 0 T) give the histogram shown in figure 6. By

comparison with figure 4, it is clear that no significant difference between
0

log dF3 4 (x) and log dF3 3 (x) is evident. Therefore, the misclassifi-

Table 9. Parameters of HMM(4), Rounded
to Three Significant Digits

NUMBER OF MARKOV STATES = 5

NUMBER OF SYMBOLS PER STATE = 8

INITIAL STATE PROBABILITY VECTOR:
l.OOE+O0 O.OOE O0 O.OOE+0O O.OOE+00 O.OOE+O0

TRANSITION PROBABILITY MATRIX:
6.OOE-Ol 4.OOE-Ol O.OOE+O0 O.OOE+O0 O.OOE O0
O.OOE+O0 7.OOE-0 2.OOE-01 l.OOE-0l O.OOE+00
O.OOE+O0 O.OOEfOO 6.OOE-Ol 4.OOE-Ol O.OOE-0O
O.OOEO0 O.OOE+O0 O.OOE+O0 7.OOE-Ol 3.OOE-Ol
O.OOE+OO O.OOE OO O.OOE+O0 O.OOE+0O l.OOE O0

SYMBOL PROBABILITY MATRIX (TRANSPOSED):
B.99E-Ol l.OOE-Ol 1.43E-04 l.43E-04 1.43E-04
l.OOE-Ol 5.99E-01 1.43E-04 l.43E-04 1.43E-04
l.43E-04 2.OOE-Ol 3.OOE-Ol l.43E-04 1.43E-04
l.43E-04 l.OOE-Ol 5.99E-01 I.OOE-Ol 1.43E-04
l.43E-04 1.43E-04 l.OOE-Ol 2.OOE-Ol 1.43E-04
l.43E-04 1.43E-04 1.43E-04 4.OOE-Ol l.OOE-Ol
l.43E-04 1.43E-04 1.43E-04 3.OOE-0l 5.99E-01
l.43E-04 1.43E-04 1.43E-04 l.43E-04 3.OOE-Ol
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0
Figure 6. Histogram of 9879 Samples of log dF3 4 (x) for T = 25.

(The Normal Curve Has the Sample Mean - -28.156 and
the Variance = 3.6167.)

cation rate due to noise-induced shifts in the statistics of dF0 4 (x) is

effectively zero. The maximum posterior classifier is thus 98.8 percent

reliable when used with noisy observations characterized by the noise

probability matrix H.

Because ET = 0.001 in this example, each observation sequence 025

has probability 0.025 of having at least one incorrect symbol. Of 10000

observation sequences, the expected number with at least one incorrect

symbol is 250. Nearly half (121) contained forbidden symbol sequences and

caused the only significant misclassification problem. The other half

apparently made no contribution to misclassification.

It would be desirable to be able to compute the moments of F0 (x)ii~x

instead of Fii (x). Alternatively, it would be desirable to be able to

compute the amplitude of the impulse (delta function) in dF. .(x) that

seems to be present in the left-to-right HMMs considered here. In other

words, if we write

dF. (x) = A 6(x) + dF. 0 (x) , (34)
ii3
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then an algorithm to compute A directly would be worthwhile. Knowing A and

the moments of F.. gives the moments of F0 (x). However, developing
.. ir

such an algorithm requires further work.

IV. CONCLUSIONS

The first two moments M ij(1,T) and M ij(2,T) of F ij(x) give good

estimatE, of the probability density function dFi(x) in the case when

HMM(i) and HMM(j) are both ergodic. The reason is that dFij (x) is

apparently nearly log-normal. The evidence supporting this claim is

strictly empirical and a proof of the degree of approximation of dF ij(x)

to log-normal would be worthwhile. When either HMM(i) or HMM(j), or both,

are not ergodic, dF ij (x) does not approximate the log-normal

distribution. Consequently, higher order moments are needed to develop

reasonable continuous approximations to dFij(x).
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